Skip to contents

This function simulates accuracy data for the factorial design of the experiment.

It was designed for potential power analyses on accuracy data, but it ended up being unused due to a lack of previous data to base the analyses on. The power analyses were conducted on RT data instead.

It creates a data frame with the following columns:

  • id: A unique identifier for each subject.

  • Group: The group to which the subject belongs (aphantasia or typical).

  • category: The category of the trial (visual, spatial, or control).

  • trial: The trial number (1 to 9).

  • accuracy: The accuracy of the subject's response (1 for correct, 0 for incorrect). Inspired by Lisa DeBruine.

Usage

simulate_acc_data(
  n_subj_per_group,
  beta_0 = 1.36,
  tau_0 = 0.05,
  tau_vis = 0.01,
  tau_spa = 0.01,
  beta_aph = 0,
  beta_vis = 0,
  beta_spa = 0,
  beta_aph_vis = 0,
  beta_aph_spa = 0,
  seed = NULL,
  ...
)

Arguments

n_subj_per_group

The number of subjects per group.

beta_0

The intercept for the model.

tau_0

The standard deviation of the random intercept for each subject.

tau_vis

The standard deviation of the random slope for the visual category.

tau_spa

The standard deviation of the random slope for the spatial category.

beta_aph

The fixed effect of the aphantasia group.

beta_vis

The fixed effect of the visual category.

beta_spa

The fixed effect of the spatial category.

beta_aph_vis

The interaction between the aphantasia group and the visual category.

beta_aph_spa

The interaction between the aphantasia group and the spatial category.

seed

The seed for random number generation. If NULL, the seed is not set.

...

Additional arguments passed to the function. Unused.

Value

A data frame with the simulated accuracy data.

Examples

df <- simulate_acc_data(100)
head(df)
#> # A tibble: 6 × 16
#>   id    group category accuracy trial    tau_0 tau_vis tau_spa aphantasia visual
#>   <chr> <fct> <fct>       <int> <int>    <dbl>   <dbl>   <dbl>      <dbl>  <dbl>
#> 1 id001 Apha… Visual          1     1 -0.00281  0.0161  0.0180          1      1
#> 2 id001 Apha… Visual          1     2 -0.00281  0.0161  0.0180          1      1
#> 3 id001 Apha… Visual          1     3 -0.00281  0.0161  0.0180          1      1
#> 4 id001 Apha… Visual          0     4 -0.00281  0.0161  0.0180          1      1
#> 5 id001 Apha… Visual          1     5 -0.00281  0.0161  0.0180          1      1
#> 6 id001 Apha… Visual          1     6 -0.00281  0.0161  0.0180          1      1
#> # ℹ 6 more variables: spatial <dbl>, Y <dbl>, pr <dbl>, n_correct <int>,
#> #   n_trials <int>, mean_acc <dbl>

df |>
  dplyr::group_by(group, category) |>
  dplyr::reframe(
    mean_acc = mean(accuracy),
    median_acc = median(accuracy),
    sd_acc = sd(accuracy)
    )
#> # A tibble: 6 × 5
#>   group      category mean_acc median_acc sd_acc
#>   <fct>      <fct>       <dbl>      <dbl>  <dbl>
#> 1 Aphantasia Control     0.772          1  0.420
#> 2 Aphantasia Spatial     0.794          1  0.404
#> 3 Aphantasia Visual      0.788          1  0.409
#> 4 Typical    Control     0.784          1  0.411
#> 5 Typical    Spatial     0.8            1  0.400
#> 6 Typical    Visual      0.768          1  0.422