Skip to contents

Raw data

survey_data
Participant's questionnaire data
experiment_data
Reasoning experiment data

Data preparation

get_clean_data()
Wrapper function to get clean "analysis-ready" data
filter_random_accuracy_ids()
Filter participants with below random accuracy
filter_manually_identified_ids()
Filter manually identified participant based on various criteria
filter_suspicious_rt_ids() mark_suspicious_rt_ids()
Filter (or mark) participants with suspicious median RTs
filter_trials_on_rt()
Filter outlier trials based on mean response time per participant
factor_categories()
Convert the category column to a factor with contrasts
factor_groups()
Convert the group column to a factor with the desired VVIQ classification
factor_strategies()
Convert strategy columns to factors with optionally ordered levels
factor_chr_vars()
Convert all character variables in a data frame to factors
compute_nieq_scores()
Compute NIEQ scores by combining the frequency and proportion items of each subscale
pivot_strategies_longer()
Get a long format data frame with the strategies gathered in a single column
pivot_terms_longer()
Get a long format data frame with the problem terms in a single column

Clustering

cluster_osivq()
Cluster the OSIVQ data using consensus between various algorithms
add_named_clusters()
Add a column with named cluster assignments to a data frame
summarise_clustering()
Get the size and questionnaire means of clusters

Modelling

build_formula()
Build a formula based on the common model for accuracy and RT modelling
set_ranef_prior()
Create a weakly informative regularizing Gamma prior for the random effects
fit_clm()
Fit a cumulative link model (CLM) using the ordinal package
get_contrast()
Get the pairwise contrasts of variables in a model
get_params()
Get the fixed parameters of a model in a clean format
get_performance()
Get performance indices for a model in a clean format
get_singularity()
Check if the model is singular and print a message
report_contrast()
Get the contrasts of a model and format them for reporting

Visualisation

plot_median_rt_distribution()
Plot the distribution of the median RT across participants
plot_osivq_ternary()
Plot the OSIVQ scores of clusters in a ternary diagram
plot_strategies_barplot()
Plot proportions of strategy use for groups as barplots
plot_strategies_scores()
Plot mean strategy scores for groups
add_significance()
Add significance label and line to a plot
theme_pdf()
Theme for elegant scientific vector figures
save_plot()
Custom ggsave wrapper set with Nature's formatting guidelines

Simulation

simulate_rt_data()
Simulate skewed RT data for the factorial design
simulate_acc_data()
Simulate accuracy data for the factorial design