Skip to contents

This function computes the Bayes Factors for associations between a grouping variable (e.g., Group, Cluster) and the variables education, field, and occupation in a data frame. It uses the BayesFactor::contingencyTableBF() function to compute the Bayes Factor for each variable and returns a tidy data frame with the results.

Usage

get_association_models(df, groups, type = "indepMulti")

Arguments

df

A data frame containing the variables education, field, and occupation, along with the grouping variable.

groups

A grouping variable (e.g. Group or Cluster) without quotes.

type

A character string specifying the type of contingency table model to use. Default is "indepMulti", which indicates an independent multinomial model. See ?BayesFactor::contingencyTableBF for more details and options.

Value

A data frame summarising the Bayes Factors for associations between the grouping variable and the variables education, field, and occupation, with the variable name in a Variable column, the contingency table in a table column, and the log Bayes Factor in a log_bf10 column. The variable names are capitalised for better readability.

Examples

df_merged <- merge_clusters(
  df_raw     = study_data,
  df_red     = scale_reduce_vars(study_data),
  clustering = cluster_selected_vars(study_data)
)
get_association_models(df_merged, group)
#> # A tibble: 3 × 4
#> # Rowwise:  Variable
#>   Variable   data              table             log_bf10
#>   <chr>      <list>            <list>               <dbl>
#> 1 Education  <tibble [96 × 2]> <tibble [6 × 3]>     -4.88
#> 2 Field      <tibble [96 × 2]> <tibble [11 × 3]>    -5.41
#> 3 Occupation <tibble [96 × 2]> <tibble [9 × 3]>     -4.37
get_association_models(df_merged, cluster)
#> # A tibble: 3 × 4
#> # Rowwise:  Variable
#>   Variable   data              table             log_bf10
#>   <chr>      <list>            <list>               <dbl>
#> 1 Education  <tibble [96 × 2]> <tibble [6 × 4]>     -7.44
#> 2 Field      <tibble [96 × 2]> <tibble [11 × 4]>    -6.06
#> 3 Occupation <tibble [96 × 2]> <tibble [9 × 4]>     -3.88
get_association_models(df_merged, subcluster)
#> # A tibble: 3 × 4
#> # Rowwise:  Variable
#>   Variable   data              table             log_bf10
#>   <chr>      <list>            <list>               <dbl>
#> 1 Education  <tibble [96 × 2]> <tibble [6 × 5]>     -9.84
#> 2 Field      <tibble [96 × 2]> <tibble [11 × 5]>    -7.7 
#> 3 Occupation <tibble [96 × 2]> <tibble [9 × 5]>     -7.06
get_association_models(df_merged, group)$table
#> [[1]]
#> # A tibble: 6 × 3
#>   value           Control Aphantasic
#>   <fct>             <int>      <int>
#> 1 Other                 5          4
#> 2 Upper secondary       1          0
#> 3 Post-secondary        9          5
#> 4 Bachelor             17         17
#> 5 Master               17         16
#> 6 Doctorate             2          3
#> 
#> [[2]]
#> # A tibble: 11 × 3
#>    value                                        Control Aphantasic
#>    <fct>                                          <int>      <int>
#>  1 Generic programmes                                 4          4
#>  2 Education                                          1          1
#>  3 Arts, humanities                                   9         12
#>  4 Social sciences, journalism, information          11          4
#>  5 Business, Administration, Law                     10          8
#>  6 Natural sciences, mathematics, statistics          6          4
#>  7 Information, communication technologies            4          4
#>  8 Engineering, manufacturing, construction           3          3
#>  9 Agriculture, forestry, fisheries, veterinary       1          1
#> 10 Health and Welfare                                 2          3
#> 11 Services                                           0          1
#> 
#> [[3]]
#> # A tibble: 9 × 3
#>   value                       Control Aphantasic
#>   <fct>                         <int>      <int>
#> 1 No answer                         1          1
#> 2 Unemployed                        1          1
#> 3 Student                          20         12
#> 4 Science and Engineering           2          4
#> 5 Health                            2          6
#> 6 Teaching                          4          3
#> 7 Business, Administration          9         10
#> 8 Information, Communications       8          6
#> 9 Social, Cultural, Legal           4          2
#>