
Create a table summarising the models for each variable
Source:R/get_full_model_table.R
get_full_model_table.Rd
This macro-function runs various computations to model the variables in the
Variable
column of a long format data that have their values in a value
column with a grouping variable (e.g., Group
, Cluster
) and an Age
variable. It wraps the get_mean_sd()
, get_bf_inclusion()
, and
get_contrast_bf()
functions to compute the mean and standard deviation
for each group, the Bayes Factor for Inclusion of the grouping variable and
the Age
covariate, and the contrasts between the levels of the grouping
variable, respectively. The results are then formatted in a clean table
with one row per variable and columns for the mean, standard deviation,
Bayes Factor for Inclusion, and contrasts.
Arguments
- df_long
A data frame in long format containing the variables to be analysed with a
Variable
column, avalue
column, a grouping variable (e.g.,Group
,Cluster
), and anAge
covariate. This is for example the output ofget_longer(study_data)
.- ...
A grouping variable (e.g.
Group
orCluster
) without quotes.
Examples
df_merged <- merge_clusters(
df_raw = study_data,
df_red = scale_reduce_vars(study_data),
clustering = cluster_selected_vars(study_data)
)
df_long_example <-
df_merged |>
get_longer() |>
dplyr::filter(Variable %in% c("VVIQ"))
cluster_models <- get_full_model_table(df_long_example, Cluster)
print(cluster_models)
#> # A tibble: 3 × 11
#> Variable `A (Aphant.)` `B (Mixed)` `C (Control)` Cluster Age
#> <fct> <chr> <chr> <chr> <dbl> <dbl>
#> 1 VVIQ 18.06 (4.1) 36.5 (17.56) 62.18 (8.66) 54.9 -1.11
#> 2 VVIQ 18.06 (4.1) 36.5 (17.56) 62.18 (8.66) 54.9 -1.11
#> 3 VVIQ 18.06 (4.1) 36.5 (17.56) 62.18 (8.66) 54.9 -1.11
#> # ℹ 5 more variables: `Cluster $\\times$ Age` <dbl>, Comparison <chr>,
#> # `Difference ($\\Delta$)` <dbl>, `95% CrI` <chr>, `$log(BF_{10})$` <dbl>