The function does not require any of the variables to be present in the dataframe, so any dataframe can be used. The function simply modifies the columns of interest if they
Examples
df_scaled <- scale_vars(study_data, min = 0, max = 1)
head(df_scaled)
#> # A tibble: 6 × 27
#> id age sex group education field field_code occupation occupation_code
#> <chr> <dbl> <fct> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 7210 0.13 m Contr… Master Soci… 3 Health 5
#> 2 7213 0.065 f Contr… Master Soci… 3 Student 3
#> 3 7238 0.717 f Contr… Bachelor Natu… 5 Informati… 8
#> 4 7242 0.63 f Contr… Post-sec… Busi… 4 Business,… 7
#> 5 7254 0.391 f Aphan… Doctorate Heal… 9 Health 5
#> 6 7257 0.37 m Contr… Bachelor Natu… 5 Business,… 7
#> # ℹ 18 more variables: vviq <dbl>, osivq_o <dbl>, osivq_s <dbl>, osivq_v <dbl>,
#> # psiq_vis <dbl>, psiq_aud <dbl>, psiq_od <dbl>, psiq_gout <dbl>,
#> # psiq_tou <dbl>, psiq_sens <dbl>, psiq_feel <dbl>, score_raven <dbl>,
#> # score_sri <dbl>, span_spatial <dbl>, span_digit <dbl>, wcst_accuracy <dbl>,
#> # score_similarities <dbl>, score_comprehension <dbl>
colnames(df_scaled)
#> [1] "id" "age" "sex"
#> [4] "group" "education" "field"
#> [7] "field_code" "occupation" "occupation_code"
#> [10] "vviq" "osivq_o" "osivq_s"
#> [13] "osivq_v" "psiq_vis" "psiq_aud"
#> [16] "psiq_od" "psiq_gout" "psiq_tou"
#> [19] "psiq_sens" "psiq_feel" "score_raven"
#> [22] "score_sri" "span_spatial" "span_digit"
#> [25] "wcst_accuracy" "score_similarities" "score_comprehension"